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1 Introduction

Turbulent fountains are ubiquitous in natural systems as well as in industrial processes
[7]. Fountains occur when there is a reversal or arresting of fluid motion due to buoyancy
differences between the fluid in the fountain and the ambient environment. A turbulent
fountain occurs when a fluid of non-neutral buoyancy is injected form a localized source
with sufficient momentum to be driven initially against gravity and to become turbulent.
Consider a jet of salty water injected at the bottom of a tank of fresh water. Initially,
the salt water will be driven upwards, against gravity, if there is sufficient momentum to
make the jet turbulent. The fluid will rise, entraining fresh water along the way, until it
can no longer rise. The diluted salty fluid at the top of the fountain then overturns, driven
downwards by gravity. The fluid may fall completely to the bottom or intrude horizontally
in the ambient if a background density stratification is present.

The role of rotation on the dynamics of turbulent fountains has not been detailed in
scientific literature, although it is relevant for geophysical processes. For some natural
processes involving turbulent fountains, such as cloud formation or volcanic eruptions, the
Earth’s rotation may influence the dynamics. This report presents experimental results
investigating the role of rotation on turbulent fountains.

1.1 Laminar vs. Turbulent Fountains

The Froude number (Fr) is the non-dimensional group which determines whether or not
a fountain will be turbulent or laminar. Consider a circular source with radius R and
mean source velocity ū, injecting buoyant fluid with a modified gravitational acceleration
g′ = (∆ρ/ρ0) g, where ∆ρ is the density difference between the two fluids, ρ0 is a reference
density, and g is acceleration due to gravity. Fr represents the ratio of inertial forcing to
gravitational forcing for the fountain and is defined as

Fr =
ū√
g′R

. (1)

For Fr >> 1 a fountain becomes turbulent while for Fr = O(1) it remains laminar.
Qualitatively and quantitatively there are differences between turbulent and laminar foun-
tains. Before overturning, laminar fountains rise to a height, h, which is on the order of R,
the source radius. This result may be obtained from dimensional analysis. For a laminar
fountain with four variables, h,R, g′ and ū, h ∼ R for a source with a fixed g′ and ū. There
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Figure 1: A turbulent fountain rising. Dense, salty water is injected upwards into a fresh
ambient from a high Fr source. Image from Bloomfield and Kerr [3].

is little to zero entrainment of the surrounding fluid and the laminar fountain has memory
of the source conditions, i.e., the penetration height is totally dependent upon source con-
ditions. Burridge and Hunt [4] have systematically investigated the behavior of fountains
at low and very low Fr source values. Overall, these systems are well studied.

The behavior of high Fr sources, i.e. negatively buoyant sources driven by source
momentum, was initially studied by Turner in 1966 [8]. Turbulent fountains have little
memory of the source conditions due to turbulent entrainment of ambient fluid, which
causes the fountain to penetrate such that h >> R. An example of a turbulent fountain is
shown in Figure 1. Heavy fluid is injected from a point source upwards into a still body of
ambient fluid. Turbulence enhances mixing of the lighter ambient into the injected fluid,
which reduces the buoyancy, allowing the fluid to rise higher before overturning and falling
back down.

The important parameters for turbulent fountains are the buoyancy flux, B, and the
momentum flux, M . M is the volume flux of the source times the mean outlet velocity with
units of L4/T2 and B is the volume flux of the source times g′, with units of L4/T3. For a
source with a circular cross section,

M = πR2ū2 (2)

and
B = πR2ūg′. (3)

Both of these variables include information about source conditions g′, ū and R; however,
these parameters alone do not determine the fountain height, as they do for a low Fr source
fountain.

Bloomfield and Kerr [3] determined a power law for the mean height of rise of a turbulent
fountain, based on original work by Turner [8]. The height, Hf depends solely upon M and
B. For a turbulent fountain,

Hf = 1.6M3/4B−1/2. (4)

This non-rotating, turbulent Hf is useful as a characteristic length scale. The height of
the fountain oscillates about a mean height with relatively large amplitudes. Eddies where
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mixing occurs are visible along the sides of the fountain and at the top, as shown in Figure
1. Once the fountain overturns, a curtain partially shields the sides of the rising fountain,
preventing the rising fluid from entraining the ambient fluid. The dynamics of turbulent
fountains have been well studied for a range of conditions, including turbulent fountains in
multi-layer cross-flows [1] and fountains impinging on a density interface [2].

1.2 Low Fr Sources with Rotation

Griffiths and Linden [6] investigated the stability of two-layer density stratified systems
with ambient rotation. A curved density interface forms due to the buoyancy difference
between the two fluids, and eventually the system becomes unstable under the influence of
the Coriolis force. The constant flux experiments performed by Griffiths and Linden are
related to the present investigation. A buoyant fluid was injected at the free surface of
a homogeneous body of fluid which had been spun-up to rigid body rotation. A circular
cross-section, porous source of 1 cm diameter was positioned at the free surface. A constant
volume of buoyant fluid was injected for the duration of the experiment, and the radial and
vertical growth of a vortex was observed. The Fr values for these experiments are relatively
low, ranging from 10−3 to 5, so that the flow remains laminar.

A key feature that differentiates the Griffiths and Linden experiments from those pre-
sented in this report is that upon injection there is no large vertical penetration of the fluid.
For turbulent fountains, there is a large change in height of injected fluid due to source
momentum and subsequent entrainment of ambient fluid. The momentum of the source for
the Griffiths and Linden experiments, indicated by Fr, is not sufficiently large to create
turbulent entrainment of the ambient fluid. In the constant flux experiments, a geostrophic
vortex grows, surrounded by the ambient fluid. There is very little mixing. A side-view
image showing vertical penetration of a geostrophic vortex is shown in Figure 2.

The streamlines of the flow are solely determined by rotational effects, the Coriolis
and centrifugal forces, and the modified gravity, g′, between the two fluids. Eventually,
the vortex becomes unstable to rotation and higher order modes occur. A top view of an
unstable configuration is shown in Figure 3. The vortex that forms from injected fluid forms
a smooth boundary with the ambient fluid since there is negligible mixing at the density
interface. The density difference between the two fluids is maintained as the vortex grows.
A key result of Griffiths and Linden’s work is that the radius, R ∼ t1/4 and the height,
h ∼ t1/2.

1.3 Objective: Behavior of Turbulent Fountains with Rotation

How the current investigation is situated with published scientific literature can be visualized
as table with two options, rotation or no rotation and laminar or turbulent. This grid is
shown in Figure 4. Laminar and turbulent fountains have been well characterized and
rotating currents with a low Fr have been studied, filling in three quadrants of the grid.
Conversely, constant source volume flux, turbulent fountains with background rotation have
yet to be studied. This project is situated in the bottom right corner of this grid. The
dynamics of the turbulent fountain are studied by systematic experiments over a parameter
space determined by important dimensionless groups, as discussed below.
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Figure 2: Side view of a vortex forming from Griffiths and Linden [6]. The dark vortex
is buoyant fluid injected from a low Fr source. Dotted lines are theoretical predictions
of the vortex location. The tank is rotating anti-cyclonically and the vortex is rotating
cyclonically.

Figure 3: Top view of the onset of instabilities with different azimuthal wave numbers in
experiments by Griffiths and Linden [6].
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Figure 4: The scientific context of this project fits into the bottom right quadrant of this
grid. The dynamics of rotating, turbulent fountains are investigated for the first time in
this project.

2 Dimensional Analysis

Dimensional analysis was used to determine a parameter space for experiments. Although
dimensional analysis is useful, knowing the relevant physical variables is crucial for deter-
mining appropriate dimensionless groups. Based on expected behavior of rotating systems
and turbulent fountains, relevant physical variables are determined and scaling is performed
to derive three dimensionless Π groups.

Based on the power law produced by Turner [8] and verified by Bloomfield and Kerr [3]
there is a time scale for the turbulent fountain. A relevant time scale for the time it takes
a fluid parcel to rise to the top of the fountain is the ratio of momentum flux to buoyancy
flux, M/B. For a turbulent fountain, recall that momentum flux and buoyancy flux are the
relevant parameters for predicting fountain behavior. The Coriolis parameter, f , has units
of T−1. It is the appropriate rotational time scale. The Coriolis parameter is equal to twice
the rotational frequency of the experimental table: f = 2Ω. In terms of the period of the
table’s rotation, Ttable, Ω = 2π/Ttable. Thus, the period of rotation is 4π/f s.

Since the system is rotating, there is an added stiffness to the fluid due to its vorticity.
This can be understood by considering the Taylor-Proudman Theorem. A fluid parcel that
is displaced in a direction parallel to the axis of rotation will be forced back to its initial
location by rotation. The faster the rotation rate, the more vertical displacement of fluid
parcels is suppressed. An alternative argument is that in the limit of rapid rotation, the
Taylor-Proudman Theorem gives ∂w/∂z = 0 where w is the velocity in the vertical direction,
z. Since there is no vertical flux through the bottom of the tank, w = 0, the vertical velocity
must be zero everywhere.

Using the Buckingham Pi Theorem and intuition about the system based on the Taylor-
Proudman Theorem and on behavior of non-rotating turbulent fountains, three Π groups are
determined for the rotating fountain system. There are five relevant variables in the system,
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f,M,B, the height of the fountain, Hf and the initial depth of the ambient, HT . Since
there are two dimensions, three Π groups exist. The groups are Π1=fM/B, Π2 = Hf/HT

and Π3 = M/f2H4
T . The first group, fM/B represents a ratio of the two important time

scales of the problem, the fountain rise time to the rotational time. The third group can
be thought of as a ratio of the momentum imparted to the fountain and the resistance to
vertical penetration. For simplicity, given the time constraint of the GFD program, the
ratio of fM/B was varied systematically for fixed values of M . The height of the tank HT

was also fixed. Based on the parameter space, the rotation time scale, 1/f was slower than
the fountain time scale, M/B. Thus, it was anticipated that the fountain dynamics would
dominate the system before rotation.

3 Experimental Setup

3.1 Laboratory Apparatus

Experiments were performed in the Geophysical Fluid Dynamics Laboratory at the Woods
Hole Oceanographic Institution. A 91 cm diameter cylindrical plastic tank was placed on
a direct-drive rotating table and filled with sea water to HT = 35 cm. A pump was used
to inject a constant flux of dyed fluid through a 0.5 cm diameter copper pipe, which was
positioned in the center of the tank, just below the free surface. An acrylic lid with a small
circular opening for the source was placed on top of the tank for rotating experiments. This
was so the air layer above the free surface was also brought up to solid body rotation, to
create a nearly stress free boundary between the water and air.

Instrumentation for collecting digital video data from the side view and top view were
attached to the rotating table. From the top, a Basler imager was positioned to provide a
top view of the entire tank. A Windows machine equipped with software to control the top
view camera was mounted to the rotating frame and used to acquire images. Images were
collected as single page tifs at a rate of five frames per second. The side view was filmed
on a Nikon Coolpix P7000. The collection rate was 24 frames per second. Start times were
synchronized using coordinated verbal and visual cues. For the side view, illumination was
provided using Light Tape, a flexible electro-luminescent panel, which was aligned flush
with the curved tank wall. Pictures of the experimental setup are shown in Figure 5.

3.2 Experimental Parameter Space

A total of 20 experiments were conducted to investigate the role f and B on the behavior of
turbulent fountains. The volume flux of the source, Q0, M and HT were fixed at Q0 = 5.11
cm3/s, M = 133 cm4/s2 and HT = 35 cm for all experiments. To compare the fountain rise
time and rotation time f and B were systematically varied. For the rotating experiments
the table was rotated at f = [0.5, 1.0, 2.0 and 3.0] s−1. Another set of experiments examined
the non-rotating case, f=0. For all five rotation rates, fluids of four different densities were
injected to investigate the role of buoyancy. Four values of B were examined, B/Q0 =
[0, 0.2, 0.5, 1] g′0 where g′0 ≈ 25 cm4s−3. The case of B = 0 is a jet purely driven by
momentum, since there is negligible buoyancy. In terms of the dimensionless parameter
fM/B, which represents the ratio of rotational time to fountain rise time, the fountain
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Figure 5: The experimental apparatus used to study rotating fountains. Left: the top view
of the rotating system showing the tank lid and source. Right: a side view of the system
showing the location of the two camera views as well as the lighting, provided by flexible
electro-luminescent lighting (Light Tape).

dynamics are expected to set in before rotation. The Rossby number, Ro is represented by
(fM/B)−1 for this problem. Ro is a ratio of the rotation time, 1/f s to the advective time,
M/B s for the initial values of the flow. So, Ro = B/fM for the turbulent fountain with
background rotation. The experimental parameter space is shown graphically in Figure 6.
The horizontal axis is the reciprocal Ro and the vertical axis is the theoretical fountain
height, computed from equation 4, normalized by HT .

4 Results

4.1 Role of Rotation in Turbulent Fountains

The first experiments were performed by varying f with a fixed B and M . The buoyancy
difference was set by the difference between sea water and fresh water, which was the
maximum buoyancy flux tested, B/Q0 = g′0. The role of rotation significantly influences
the system dynamics. Figure 7 is a time series comparing a non-rotating turbulent fountain
to a turbulent fountain with background rotation. In the non-rotating case, the injected
fluid spreads radially as it penetrates the ambient. Billows at the interface of the two fluids
indicate turbulent mixing, whereby denser ambient fluid mixes with the fountain, decreasing
it buoyancy. With reduced buoyancy, the fountain touches the bottom boundary of the
tank and then returns to the surface, driven by buoyancy. The same source conditions with
background rotation produced a fountain with a smoother interface and with significantly
decreased penetration. The vortex formed in the rotating case prevents the newly injected
fluid from mixing with the ambient, thus stifling penetration. Figure 8 shows the fluid
interactions occurring in the interior of a surface vortex, formed once the fountain has
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Figure 6: Experimental parameter space for non-zero buoyancy flux and non-zero rotation
rate. The vertical axis is Hf based on scaling by Bloomfield and Kerr [3] given in equation
4, scaled by the depth of the ambient, HT . The horizontal axis is the reciprocal Ro, fM/B.

turned around and risen due to its buoyancy. The injected fluid is initially colored yellow
but then dyed red after the vortex has established. The red fluid shows the fountain still
exists but is contained within the vortex. A small region at the center of the fountain may
punch through the vortex, but largely the fountain is contained within the vortex. Since the
newly injected fluid is largely shielded from the ambient by the established vortex, it may
only entrain fluid of similar density, leaving its buoyancy relatively unchanged. Without
the reduction in buoyancy, the fountain penetrates less deeply. It is too buoyant to continue
further and must rise.

For all non-zero rotation rates, rotation systematically decreases the vertical fountain
penetration. Figure 9 shows the height of the fountain as a function of time for a fixed
value of B/Q0 = g′0 and four non-zero f values. Data is plotted until a consistent fountain
depth is established. As f increases, the initial entrainment and penetration depth are
systematically decreased. Before the vortex has begun to shield the incoming fluid from the
ambient, entrainment and mixing occur, as in the non-rotating case. The vortex establishes
more rapidly at higher f , decreasing the time available for fluid to entrain the denser
ambient. Thus, the buoyancy remains unchanged and the fountain does not penetrate
as deeply. The average fountain height obtained from data presented in Figure 9, scaled
by the height of a non-rotating turbulent fountain, Hf = 1.6M3/4B−1/2 is plotted against
fM/B in Figure 10. This non-dimensional plot shows that the penetration of the fountain is
substantially reduced with increasing rotation. By comparing the volume of the vortex with
time to the injected volume, it is clear that rotation systematically suppresses entrainment,
as shown in Figure 11. Overall, the entrainment is small relative to the injected volume
and only occurs at early times, when the fountain is initiated, before the vortex partially
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Figure 7: A time series showing the influence of rotation on turbulent fountain dynamics.
Panel A shows a turbulent fountain with no background rotation. The fountain becomes
turbulent, hits the bottom of the tank, and eventually rises back up to the surface. Panel B
shows the same fluid being injected with identical source conditions, B/Q0 = 0.5g′0 = 12.5
cm4s−3 and M = 133 cm4s−2, but with a background rotation of f = 3.0 s−1. The period
of one rotation (T = 1 ROT) was 4.2 s.

Figure 8: A time series revealing fountain behavior in an established vortex. The fountain
color is changed from yellow to red after the vortex has established. The interior behavior
of the vortex-fountain system is qualitatively shown to be complex, including stratification
and circulation. Source conditions were B/Q0 = g′0 = 25 cm4s−3 and M = 133 cm4s−2

with a background rotation of f = 0.5 s−1.
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Figure 9: Height of the fountain versus time for increasing f at a fixed B. Source conditions
were B/Q0 = g′0 = 25 cm4s−3 and M = 133 cm4s−2.

encapsulates the fountain. Entrainment of ambient fluid subsidies as more fluid is injected
because the fountain is contained within the growing vortex, shown qualitatively in Figure
8. The fountain is entraining fluid of a density close to that of itself, which doesn’t enhance
mixing with the ambient and maintains a large g′.

Unexpectedly, the radius of the vortex which develops at the surface grows with t1/2.
A log-log plot of radius versus time is shown for all g′ values with varying f in Figure 12.
Since this collapses well to a line with slope of a half, this suggests that R(t) ∼ t1/2. This is
robust for all non-zero values of f and B examined. Notably, this behavior is different than
the t1/4 scaling demonstrated by Griffiths and Linden [6]. A scaling for R as a function of
f was estimated by plotting the vertical intercepts of the log-log R vs.t plots and assuming
a power law scaling of the form R ∼ t1/2fβ. This power law can be determined by plotting
the vertical intercepts of the lines of slope m = 1/2, shown as dotted lines on Figure 13.
Plotting these vertical intercepts against log f would produce a line should a power law
scaling be correct. Figure 13 shows the intercepts used to determine the value of β. Figure
14 shows the intercepts plotted against log f . Two dotted lines are plotted to serve as visual
aids, one of slope m = −1/3 and one of m = −1/2. A similar approach was applied for the
B, using data from cases with varying g′, to find that R ∼ B1/3.

The power law for R ∼ fβ is not obvious. There is support for β = −1/3 and for β =
−1/2, but it is not clear which is correct given the limited amount of data currently available.
A value of β = −1/3 would be consistent with a −1/3 power law for the dimensionless group
fM/B since R ∼ B1/3. A linear least squares fit produced a slope of β = −0.44 with a
R-squared error R2 = 0.99 and an RMS error of 0.042. Since there are only four data points,
this power law is not yet definitive. However, a power law of β = −0.44 is consistent with
expected values based on dimensional analysis and physical reasoning, as discussed further
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Figure 10: Average fountain height after long times normalized by the non-rotating fountain
height, plotted against fM/B for one value of B/Q0 = g′0. Average Hf values are obtained
from data shown Figure 9.

Figure 11: The volume of the vortex that develops plotted against total injected volume as
a function of time. The initial entrainment, indicated by the large increase in volume at
early times, is decreased with increasing f . Source conditions were B/Q0 = g′0 = 25 cm4s−3

and M = 133 cm4s−2.
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Figure 12: A log-log plot of R vs. t for varying f and three non-zero values of B/Q0 =
[0.2, 0.5 and 1.0]g′0 where g′0 = 25 cm4s−3. A line of slope m = 1/2 is shown as a dotted
line for comparison to the data. The scaling of R ∼ t1/2 is robust for the 12 experiments
represented here.

in § 4.2.
Plots collapsing the radius according to the scaling relationships R ∼ t1/2B1/3f−1/3 and

R ∼ t1/2B1/3f−1/2 are presented in Figures 15 and 16, respectively. Both of these plots
collapse the data relatively well. Since M and HT were not varied due to time constraints,
there is not enough information to determine a complete scaling for radial growth of the
vortex at the surface. However, there has been progress toward determining a comprehensive
power law. An interesting finding that is strongly supported by this data set is that the
radius grows with t1/2 rather than t1/4, as was determined by Griffiths and Linden [6].

4.2 Turbulence versus Rotation in Rotating Jets

In order to further understand how rotation impacts the fountain, the simplified case of a
pure momentum source (i.e. a jet) with background rotation was studied. The experimental
setup was the same, except salt water was injected into salt water, so there was no buoyancy
flux. The experiment was repeated for the same rotation rates, f = [0.5, 1.0, 2.0 and 3.0]
s−1. As expected from the previous experiments, rotation plays a critical role. A time
series of the early time behavior of a jet with and without rotation is shown in Figure
17. The jets subjected to background rotation are contained to a vertical column almost
immediately. The non-rotating jet expands laterally and reaches the bottom. Background
rotation influences the jet by constraining radial growth to a vertical column. The jet with
rotation penetrates the ambient, but does not descend to the bottom of the tank as the jet
does. As more fluid is added, the column grows radially and the vertical interface with the
ambient fluid is maintained. The fluid appears to be forced into a Taylor column at very
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Figure 13: To estimate a power law for R ∼ fβ the vertical intercepts of the dotted lines,
indicated by red asterisks, are plotted against log f in Figure 14. Source conditions were
B/Q0 = g′0 = 25 cm4s−3 and M = 133 cm4s−2.

Figure 14: A plot of the vertical intercepts in Figure 13 versus log f . Source conditions were
B/Q0 = g′0 = 25 cm4s−3 and M = 133 cm4s−2. Lines of slope m = −1/2 and m = −1/3
are shown for comparison. A least squares analysis produces a slope of m = −0.44 with an
R-squared fit of R2 = 0.99 and an RMS error of 0.042.
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Figure 15: Collapse of R data for cases of non-zero f and B. Data is fit according to the
scaling R ∼ t1/2f−1/3B1/3, which has dimensions of T−1/6L4/3. B/Q0 = [0.2, 0.5 and 1.0]g′0
where g′0 = 25 cm4s−3.

Figure 16: Collapse of R data for cases of non-zero f and B. Data is fit according to
the scaling R ∼ t1/2f−1/2B1/3 which has dimensions of T−1/2L4/3. Source conditions were
B/Q0 = [0.2, 0.5 and 1.0]g′0 where g′0 = 25 cm4s−3.
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Figure 17: A time series comparing a turbulent jet with no background rotation (A) and
with background rotation (B). The rotation rate is f = 3.0 s−1, corresponding to one
rotational period (T = 1 ROT) of 4.2 s. Snapshots are taken after 1,2,3,4 and 5 rotational
periods. Source conditions were B = 0 and M = 133 cm4s−2.

early times, as soon as two rotational periods. In order to quantify the role of rotation, the
radius of the initial Taylor column, RTC , was plotted against f . An example measurement
RTC is shown in Figure 18.

From dimensional analysis an expected scaling for f can be obtained. For a non-buoyant
(B = 0), turbulent jet with background rotation the meaningful physical parameters are
RTC , f , and M . From this, RTC ∼ f−1/2M1/4 is expected. A dotted line of slope m = −1/2
is plotted along with the experimental results in Figure 19. This fits the data well and is
consistent with the proposed scaling. A linear least squares analysis yielded a power law
exponent of −0.46 with and R-squared error R2 = 0.96 and an RMS error of 0.089. This
result agrees with a study of rotating jets by Etling and Fernando, [5]. This scaling of
f−1/2 may be influencing the radial growth of the vortex for the buoyant cases. This
finding supports the scaling of R ∼ f−1/2, although more data is necessary to validate the
relationship.

5 Conclusion and Future Work

The dynamics of turbulent fountains and jets with background rotation was investigated
by varying the non-dimensional parameter, fM/B, which represents a ratio of the fountain
time to the rotation time. Key results of this project are shown in Figure 20. Although
more rigorous statistical analysis is ongoing to clarify and validate the scaling laws presented
in this report, many trends have been observed clearly. For cases where B 6= 0, once the
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Figure 18: The distance treated as the radius of the Taylor column, RTC , for jets with
background rotation. The source conditions were B = 0 and M = 133 cm4s−2 with a
background rotation of f = 3.0 s−1.

Figure 19: A log-log plot of the radius of the Taylor column versus f . A dotted line of
slope m = −1/2, which is expected from dimensional analysis, is shown for comparison.
The source conditions were B = 0 and M = 133 cm4s−2.
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Figure 20: As a follow up to the diagram shown in Figure 4, the results of this project have
begun to populate the bottom right quadrant.

fountain returns to the surface, the radius of the vortex grows as R ∼ t1/2. Comparing cases
with varying B showed R ∼ B1/3; however, the dependence on rotation is less clear, leaving
R ∼ f−1/2 and R ∼ f−1/3 as possible power laws. There is support for both of these laws.
More data is necessary to clarify the dependence on f . It could be argued that R ∼ f−1/2

based on evidence that a Taylor column with RTC ∼ f−1/2 establishes at early times.
Experiments varying HT and M will be performed in the near future. HT appears to

matter for the fountain system. This is in contrast to Bloomfield and Kerr [3], where the
penetration height Hf does not depend on HT . Solid-body rotation introduces a stiffness
to the ambient fluid which strongly discourages vertical motion, in accordance with the
Taylor-Proudman Theorem. This is apparent by how rotation systematically suppresses
fountain penetration. The fluid appears to be forced into a Taylor column after just a few
rotation periods. RTC appears to scale according to RTC ∼ f−1/2.

Another ongoing aspect of this project is investigating the onset of instability once
the vortex becomes unstable to rotation. A picture demonstrating the onset of different
instabilities shown from the top view is show in Figure 21. For a turbulent source with
background rotation, higher order azimuthal wave numbers are observed, as they are in
Griffiths and Linden [6]. Further characterization of these instabilities will be the topic of
future work.
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Figure 21: Once the fluid returns to the surface, the vortex becomes unstable to rotation.
Characterization of this unstable behavior is ongoing. Panel A shows source conditions of
B/Q0 = 0.2g′0 = 4.9 cm4s−3 and M = 133 cm4s−2, with a background rotation of f = 2.0
s−1. Panel B shows source conditions of B/Q0 = 0.2g′0 = 4.9 cm4s−3 and the same M with
a background rotation of f = 0.5 s−1.
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